منابع مشابه
Classical Invariant Theory and the Equivalence Problem for Particle Lagrangians
The problem of equivalence of binary forms under the general linear group is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent variables. The latter problem has a complete solution based on the equivalence method of Cartan. This leads to the determination of a universal function which r...
متن کاملEquivalence Theorem for Lagrangians in Different Dimensions
A proof is given for the observation that the equations of motion for the companion Lagrangian without a square root, subject to some constraints, just reduce to the equations of motion for the companion Lagrangian with a square root in one less dimension. The companion Lagrangian is just an extension of the Klein-Gordon Lagrangian to more fields in order to provide a field description for stri...
متن کاملClassical Invariant Theory and the Equivalence Problem for Particle Lagrangians. I. Binary Forms
The problem of equivalence of binary forms under linear changes of variables is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent vartables. The latter problem has a complete solution based on the equivalence method of Cartan. There are two particular rational covariants of any binary f...
متن کاملOn the Equivalence Problem for
On the one hand, the inclusion problem for nonerasing and erasing pattern languages is undecidable; see JSSY95]. On the other hand, the language equivalence problem for NE-pattern languages is trivially decidable (see Ang80a]) but the question of whether the same holds for E-pattern languages is still open. It has been conjectured by Jiang et al. JSSY95] that the language equivalence problem fo...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1988
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1988.102245